3.1.26 \(\int \frac {(a+b x^2) \sqrt {e+f x^2}}{(c+d x^2)^{3/2}} \, dx\) [26]

Optimal. Leaf size=271 \[ \frac {(2 b c-a d) f x \sqrt {c+d x^2}}{c d^2 \sqrt {e+f x^2}}-\frac {(b c-a d) x \sqrt {e+f x^2}}{c d \sqrt {c+d x^2}}-\frac {(2 b c-a d) \sqrt {e} \sqrt {f} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {b e^{3/2} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}} \]

[Out]

(-a*d+2*b*c)*f*x*(d*x^2+c)^(1/2)/c/d^2/(f*x^2+e)^(1/2)+b*e^(3/2)*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*Ellip
ticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*(d*x^2+c)^(1/2)/c/d/f^(1/2)/(e*(d*x^2+c)/c/(f*x^2+
e))^(1/2)/(f*x^2+e)^(1/2)-(-a*d+2*b*c)*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1+
f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*f^(1/2)*(d*x^2+c)^(1/2)/c/d^2/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2
+e)^(1/2)-(-a*d+b*c)*x*(f*x^2+e)^(1/2)/c/d/(d*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 271, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {540, 545, 429, 506, 422} \begin {gather*} -\frac {\sqrt {e} \sqrt {f} \sqrt {c+d x^2} (2 b c-a d) E\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d^2 \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}+\frac {f x \sqrt {c+d x^2} (2 b c-a d)}{c d^2 \sqrt {e+f x^2}}-\frac {x \sqrt {e+f x^2} (b c-a d)}{c d \sqrt {c+d x^2}}+\frac {b e^{3/2} \sqrt {c+d x^2} F\left (\text {ArcTan}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d \sqrt {f} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)*Sqrt[e + f*x^2])/(c + d*x^2)^(3/2),x]

[Out]

((2*b*c - a*d)*f*x*Sqrt[c + d*x^2])/(c*d^2*Sqrt[e + f*x^2]) - ((b*c - a*d)*x*Sqrt[e + f*x^2])/(c*d*Sqrt[c + d*
x^2]) - ((2*b*c - a*d)*Sqrt[e]*Sqrt[f]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)]
)/(c*d^2*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (b*e^(3/2)*Sqrt[c + d*x^2]*EllipticF[ArcTan[
(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(c*d*Sqrt[f]*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 540

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*n*(p + 1))), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x
^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))
*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right ) \sqrt {e+f x^2}}{\left (c+d x^2\right )^{3/2}} \, dx &=-\frac {(b c-a d) x \sqrt {e+f x^2}}{c d \sqrt {c+d x^2}}-\frac {\int \frac {-b c e-(2 b c-a d) f x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{c d}\\ &=-\frac {(b c-a d) x \sqrt {e+f x^2}}{c d \sqrt {c+d x^2}}+\frac {(b e) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{d}+\frac {((2 b c-a d) f) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{c d}\\ &=\frac {(2 b c-a d) f x \sqrt {c+d x^2}}{c d^2 \sqrt {e+f x^2}}-\frac {(b c-a d) x \sqrt {e+f x^2}}{c d \sqrt {c+d x^2}}+\frac {b e^{3/2} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {((2 b c-a d) e f) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{c d^2}\\ &=\frac {(2 b c-a d) f x \sqrt {c+d x^2}}{c d^2 \sqrt {e+f x^2}}-\frac {(b c-a d) x \sqrt {e+f x^2}}{c d \sqrt {c+d x^2}}-\frac {(2 b c-a d) \sqrt {e} \sqrt {f} \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d^2 \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {b e^{3/2} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{c d \sqrt {f} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 2.68, size = 192, normalized size = 0.71 \begin {gather*} \frac {-i (2 b c-a d) e \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-(b c-a d) \left (\sqrt {\frac {d}{c}} x \left (e+f x^2\right )-i e \sqrt {1+\frac {d x^2}{c}} \sqrt {1+\frac {f x^2}{e}} F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )\right )}{c^2 \left (\frac {d}{c}\right )^{3/2} \sqrt {c+d x^2} \sqrt {e+f x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)*Sqrt[e + f*x^2])/(c + d*x^2)^(3/2),x]

[Out]

((-I)*(2*b*c - a*d)*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] -
 (b*c - a*d)*(Sqrt[d/c]*x*(e + f*x^2) - I*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticF[I*ArcSinh[Sqrt[d
/c]*x], (c*f)/(d*e)]))/(c^2*(d/c)^(3/2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 328, normalized size = 1.21

method result size
default \(\frac {\sqrt {f \,x^{2}+e}\, \sqrt {d \,x^{2}+c}\, \left (\sqrt {-\frac {d}{c}}\, a d f \,x^{3}-\sqrt {-\frac {d}{c}}\, b c f \,x^{3}+\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a d e -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c e -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) a d e +2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, \EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {\frac {c f}{d e}}\right ) b c e +\sqrt {-\frac {d}{c}}\, a d e x -\sqrt {-\frac {d}{c}}\, b c e x \right )}{d \left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right ) c \sqrt {-\frac {d}{c}}}\) \(328\)
elliptic \(\frac {\sqrt {\left (d \,x^{2}+c \right ) \left (f \,x^{2}+e \right )}\, \left (\frac {\left (d f \,x^{2}+d e \right ) \left (a d -b c \right ) x}{d^{2} c \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (d f \,x^{2}+d e \right )}}+\frac {\left (\frac {a d f -b c f +b d e}{d^{2}}-\frac {\left (a d -b c \right ) \left (c f -d e \right )}{d^{2} c}-\frac {e \left (a d -b c \right )}{d c}\right ) \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}}-\frac {\left (\frac {b f}{d}-\frac {\left (a d -b c \right ) f}{d c}\right ) e \sqrt {1+\frac {d \,x^{2}}{c}}\, \sqrt {1+\frac {f \,x^{2}}{e}}\, \left (\EllipticF \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )-\EllipticE \left (x \sqrt {-\frac {d}{c}}, \sqrt {-1+\frac {c f +d e}{e d}}\right )\right )}{\sqrt {-\frac {d}{c}}\, \sqrt {d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e}\, f}\right )}{\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}}\) \(379\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)*(f*x^2+e)^(1/2)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)*((-d/c)^(1/2)*a*d*f*x^3-(-d/c)^(1/2)*b*c*f*x^3+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/
e)^(1/2)*EllipticF(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d*e-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF(x*(
-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*e-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^
(1/2))*a*d*e+2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*b*c*e+(-d/c)^
(1/2)*a*d*e*x-(-d/c)^(1/2)*b*c*e*x)/d/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)/c/(-d/c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)*sqrt(f*x^2 + e)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right ) \sqrt {e + f x^{2}}}{\left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)*(f*x**2+e)**(1/2)/(d*x**2+c)**(3/2),x)

[Out]

Integral((a + b*x**2)*sqrt(e + f*x**2)/(c + d*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(f*x^2+e)^(1/2)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)*sqrt(f*x^2 + e)/(d*x^2 + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\left (b\,x^2+a\right )\,\sqrt {f\,x^2+e}}{{\left (d\,x^2+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^2)*(e + f*x^2)^(1/2))/(c + d*x^2)^(3/2),x)

[Out]

int(((a + b*x^2)*(e + f*x^2)^(1/2))/(c + d*x^2)^(3/2), x)

________________________________________________________________________________________